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Background: Lots of 2D materials, why WSe2?
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Outstanding Scientific Questions
∂/∂εij (electrical conductivity) = ???          ∂/∂εij (electronic mobility) = ???

 · How does strain affect in-plane electronic transport differently in materials with thickness-sensitive 
(WSe2 ) versus insensitive (ReS2 ) electron orbitals?
 · How does strain affect electronic transport in quasi-stable 2D materials which are predicted to 
undergo a semiconductor-to-metal phase transition with tensile strain (MoTe2 )?
 · What effect does the method of production (powder vaporization, MOCVD) have on reproducibilty 
of electronic properties in promising materials for next generation nanoelectronic application?

 · Development of a in-situ transmission electron microscopy technique involving a micro-test 
platform with built-in piezoelectric actuators for the investigation of uniaxial and biaxial strain on 
electronic transport properties of low-dimensional nanoelectronic materials.
 · Establishment of a new paradigm in understanding of strain-induced effects which will identify 
reproducible manufacturing strategies for reliable next-generation nanoelectronics.
 · Clear and conceptual advance of carrier transport in nanoelectronic materials that will contribute 
to solving practical problems identified by the U.S. Department of Defense.

Impact of the Proposed Research
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Generation 2D Electronics
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• n- and p-type doping

•melectron ~ mhole

• ~50-200 cm2V-1s-1 mobility

• Band edges aligned with common 
metal work functions

• Useful in many important future 
application areas:

Electronics

Yu & Palacios 2015 
http://dx.doi.org/10.1021/acs.nanolett.5b

00668

Electrocatalysis

Wang & Cui 2013 
http://dx.doi.org/10.1021/nl401944f

Quantum Optics

He 2015
https://doi.org/10.1038/nnano.2015.75



Background: Band structure evolution
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• Bulk WSe2 is an indirect semiconductor

–Eg,indirect = 1.2 eV (1.03 µm)

• Trilayer is indirect
–Eg,indirect = 1.46 eV (849 nm)

–Eg,A = ~1.60 eV (773 nm)

• Bilayer is indirect
–Eg,indirect = 1.54 eV (806 nm)

–Eg,A = 1.60 eV (773 nm)

• Monolayer is a direct semiconductor

–Eg,A = 1.65 eV (752 nm)
Tonndorf & Bratschitsch 2013, https://doi.org/10.1364/OE.21.004908



Strain-coupled Transport in Bi-layer WSe2
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Motivation: 2D materials much more compliant than bulk
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relationship between thermal expansion 
coefficient, α, and elastic modulus, E:

α ∝ γρcv/E
so with assumptions

E ∝ α-1
• (α , E) of PET substrate:
–20-80×10-6 K-1, (2–4) GPa
• (α , E) of WSe2
–monolayer: 154×10-6 K-1

–bilayer: 42×10-6 K-1

–bulk: (7–14)×10-6 K-1, ~170 GPa

Thermal Expansion Coefficient, 2D >> bulk

Hu & Klie 2018, https://doi.org/10.1103/PhysRevLett.120.055902



Spatial uniformity of synthesized bilayer WSe2
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Raman – excitation @ 532 nm Atomic Force Microscopy

Corrected STEM using TEAM 0.5, 80 kV (w/Peter 
Ercius, NCEM)
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A four point bending approach to impart strain
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a b

a b

PET
1mm thick

WSe2
-encapsulated in PMMA
-on thick PET



Validation of our strain values: Encapsulated monolayer graphene
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Measured Grüneisen parameter of CVD 
graphene
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Validation of our strain values: Patterned and encapsulated monolayer 
graphene
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Measured Grüneisen parameter of 
patterned CVD graphene
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Now for our bilayer WSe2
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Measured Grüneisen parameter of bi-layer 
WSe2



Calibration/validation is critically important
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39. Wu, W., Wang, J., Ercius, P., Wright, N. C., Leppert-
Simenauer, D. M., Burke, R. A., Dubey, M., Dogare, A. 
M., & Pettes, M. T. Giant mechano-optoelectronic effect 
in an atomically thin semiconductor. Nano Letters 18, 
2351-2357 (2018). 
http://dx.doi.org/10.1021/acs.nanolett.7b05229

47. Conley, H. J., Wang, B., Ziegler, J. I., Haglund, R. F., 
Jr., Pantelides, S. T., & Bolotin, K. I. Bandgap 
engineering of strained monolayer and bilayer MoS2. 
Nano Letters 13, 3626-3630 (2013). 
http://dx.doi.org/10.1021/nl4014748

50. Desai, S. B., Seol, G., Kang, J. S., Fang, H., 
Battaglia, C., Kapadia, R., Ager, J. W., Guo, J., & Javey, 
A. Strain-induced indirect to direct bandgap transition in 
multilayer WSe2. Nano Letters 14, 4592-4597 (2014). 
http://dx.doi.org/10.1021/nl501638a

problems

expected



Cycling results indicate we remain in the elastic regime
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Amplification of the photoluminescence intensity
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Indirect-to-direct electronic band transition conversion
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We have compared our results and DFT model with: 
[25] S. B. Desai and A. Javey et al., Nano Lett. 2014, 
14, 4592. http://dx.doi.org/10.1021/nl501638a

DFT theoretical prediction which includes realistic system conditions – van der 
Waals interaction and 3D Poisson effect – explains experimental observation



Implications:
Strain Strongly Impacts Energy Landscape

– Quantum Emission from Locally Strained Epitaxial WSe2 –
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Motivation: Single photon sources

10/16/19 |   18Los Alamos National Laboratory

GaSe: Optically Driven

Tonndorf & Bratschitsch 2017, https://doi.org/10.1088/2053-1583/aa525b

WSe2: Electrically & Optically Driven

Palacios-Berraquero & Atatüre 2016, https://doi.org/10.1038/ncomms12978

with the ground electrode. The brighter area in Fig. 2a
corresponds to the bilayer, suggesting that most of the injected
current flows through this region (see Supplementary Fig. 11). In
addition to the spatially uniform light emission from delocalized
excitons, we observe quantum LED (QLED) operation in the
form of highly localized light emission from both the monolayer
and the bilayer WSe2, identified by the dotted circles (Fig. 2a).
These localized states lie within the bandgap of WSe2, and
therefore emit at lower energies (longer wavelength) with
respect to the bulk exciton emission (see Fig. 2b)13–17. Figure 2c
shows example emission spectra from these sites, where the top
(bottom) spectrum belongs to a quantum emitter in the
monolayer (bilayer) WSe2. We observe spectrally isolated peaks
from multiple locations in most devices with linewidths ranging
between 0.8 and 3 nm. We see on average 1–2 emitters per
B40mm2 active device area. Electrically excited narrow lines
coming from bilayer WSe2 regions are typically redshifted with
respect to those coming from the monolayer regions28. The
emission peaks of Fig. 2c are unpolarized, and the fine structure
splitting reported in PL experiments (B0.3 nm (refs 13–17)) is
not resolvable due to the broader linewidths we observe in EL.
On the timescale of seconds, most emitters show spectral
wandering, of up to 2 nm, similar to that seen in our PL
measurements. Gating and encapsulation of the active layer
should aid in reducing the broad linewidths observed here, which
we attribute to charge noise in the device. Slow spectral
fluctuations can further be reduced through active feedback,
for example via the direct current Stark shift29,30. A fraction of

the quantum emitters display blinking, discrete spectral jumps
or multiple spectral lines at similar timescales (see Supplementary
Fig. 12). We also see that, as in PL, the electrically driven emitters
display robust operation, withstanding multiple (3–5) cooling/
heating cycles and several hours of measurement under
uninterrupted current flow.

Figure 2d plots the current dependence of the integrated EL
intensity from a quantum emitter, as well as from the unbound
monolayer WSe2 excitons. The latter shows a predominantly
linear relation between emission intensity and injected current;
however, EL emission from the quantum emitter shows clear
saturation as a function of current, a universal behaviour seen
with single-photon sources31 (see Supplementary Fig. 13 for a
plot of the unbound exciton and quantum emitter spectra as a
function of current). Figure 2e shows the measured intensity-
correlation function, g(2)(t), of the integrated EL emission from a
WSe2-based QLED using a Hanbury Brown and Twiss
interferometer (see ‘Methods’). The value of the normalized
g(2)(0) drops to 0.29±0.08, well below the threshold value of 0.5,
expected for a single-photon source1. We note that these data are
not corrected for background emission within the broad spectral
window of detection or for the photon-counting detector dark
counts, which together contribute to the non-zero value of g(2)(0).
While our results manifest the single-photon nature of the
electrically generated emission as proof-of-concept, the
immediate usability of these quantum emitters as single-photon
sources would benefit from spectral filtering to suppress the
background emission. Further technical improvements, such as
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(b) A schematic energy band diagram, similar to that in Fig. 1b, including the confined electronic states of the quantum dots. EL emission from
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dot as a function of the applied current. The linear increase in WSe2 layer EL contrasts with the saturation behaviour of the QLED emission.
(e) Intensity-correlation function, g(2)(t), for the same emitter displaying the antibunched nature of the EL signal, g(2)(0)¼0.29±0.08, and
a rise-time of 9.4±2.8 ns.
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g(2)(Δt=0)=0.29±0.08
rise-time = 9.4±2.8 ns

•Method responsible for emission sites is hypothesized to be 
potential well-type energy band structure
•Other atomically-thin semiconducting materials are likely to 
yield similar results decorating different spectral windows

λ ~ 660 nm



Hypotheses

10/16/19 |   19Los Alamos National Laboratory

I will focus here in 
this presentation



Epitaxial WSe2 synthesized by Joan Redwing’s group
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• vertical cold-wall CVD reaction 
scheme using W(CO)6 and H2Se

• grain size ~200-500 nm

• grown on 1 × 1 cm sapphire substrate

• current synthesis is uniform over  a 2” 
diameter substrate



Ultra-sharp tip arrays force recombination through highly localized strain
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Large strain and strain gradients are possible for atomically-thin crystals transferred onto ultra-sharp tips

Puncture-free transfer onto ultra-sharp tip array



Beam path for optical experiments
(PL, TRPL, and Hanbury-Brown-Twiss interferometry)
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Exciton dynamics of emission

10/16/19 |   23Los Alamos National Laboratory

TRPL:
fast decay 0.80±0.04 ns
slow decay 11.20±0.66 ns

HBT:
intrinsic g(2)(Δt=0) = 0.284±0.062
intrinsic τdecay = 9.01±1.56 ns

Photon field intensity correlation proves spatially-localized 
quantum emission at the apex of the ultra-sharp SiO2 tip



Temperature dependence of emission
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Low characteristic temperatures are a
limiting feature of work in this field,
generally < 10 K

Additional work needed to understand
and increase thermal de-trapping
energy, hence the new studies depicted
in overview slide which will benefit from
new 2DCC synthesis breakthroughs



Isotope Effect in Bi-layer WSe2

10/16/19 |   25Los Alamos National Laboratory



Surprising isotope effects on electronic structure in indirect band gap 
materials
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Bulk Boron Nitride Also observed in bulk materials, e.g. Ge

Vuong & Cassabois 2018, https://doi.org/10.1038/nmat5048 Cardona & Thewalt 2005, https://doi.org/10.1103/RevModPhys.77.1173



Growth of NAWNASe2 and purified 186W80Se2
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Vibrational spectra
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Photoluminescence
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PL blue-shift with increasing mass 
results from:

1. Isotopic shift towards lower 
phonon energy

2. Isotopic shift towards higher 
band-gap renormalization energy

Need theoretical treatment to 
determine contributions to observed 
behavior, although our measurement 
leads us to postulate 2 dominates.



Local measurement of lattice parameters
4D Scanning Transmission Electron Microscopy
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Understanding thermodynamic properties and strain profiles requires new 
approaches in nanometrology
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Schematic of Scanning Nanobeam 
Electron Diffraction of MOCVD WSe2

WSe2
HAADF



Probes can be patterned to increase number of features
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Schematic of scanning nanobeam 
electron diffraction of MOCVD WSe2



Nano beam electron diffraction

10/16/19 |   33Los Alamos National Laboratory

Maximum Intensity CBED Image 128 x 64‘Virtual’ Bright Field

clear 
dominance 
of 12.5° grain 
boundaries



Nano beam electron diffraction
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Cross Correlation to Locate Peak Centers(000) Center Beam



Recovered spatial information reveals grain boundary distribution
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Ex. Sample 2Ex. Sample 1



Elliptical correction matters for quantitative analysis
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Located Peak Histogram

Enhanced resolution 
through innovation:

Patterned C2 Aperture
+

Elliptical Correction



Comparison with alternate Electron Energy Loss Spectroscopic lattice 
expansion measurement techniques
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EELS plasmon shifts versus 4D STEM elastic 
scattering
• Pros:
– Relatively simple if using correct instrument, Nion 
Company TEM (ORNL is leader in this)

• Cons:
– No structural/crystallographic information

– Already at ultimate temperature resolution of ~ 95 °C
– Very expensive and specialized instrument made 
solely for maximizing energy resolution

Idrobo et al., Phys. Rev. Lett. 2018, 120, 095901, 
https://doi.org/10.1103/PhysRevLett.120.095901



Conclusions and Acknowledgments
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Conclusions
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Elastic strain engineering (Nano Letters 2018, https://doi.org/10.1021/acs.nanolett.7b05229)
• We provided a new methodology for conducting strain-dependent experiments on thin materials and argue for adoption of a 
standard model for these studies.

• We reported a two orders of magnitude increase in the excitonic recombination rate of an indirect 2D material, bilayer WSe2.

Localized defect emission (Feature Article, Applied Physics Letters 2019, https://doi.org/10.1063/1.5091779)
• We developed a method to create highly-spatially localized and well-separated emission sites in a continuous film of WSe2
using an ultra-sharp dielectric tip array, with g(2)(Δt=0) < 0.3.

• May 2019 LANL science highlight: https://www.lanl.gov/discover/news-release-archive/2019/May/0529-quantum-information.php

Isotope effect (Nano Letters 2019, https://doi.org/10.1021/acs.nanolett.8b04269)
• We demonstrated the isotope effect on the phonon frequency, phonon lifetime, and optical band gap energy in an atomically 
thin TMD through the use of naturally abundant and isotopically pure bilayer WSe2.

• We postulated a new mechanism by which the electronic band gap energy and phonon dispersion can be tuned in this 
material by isotopic enrichment.

• April 2019 LANL science highlight: https://www.lanl.gov/discover/news-stories-archive/2019/April/0408-isotopic-composition.php

• MRS Bulletin: https://www.cambridge.org/core/journals/mrs-bulletin/news/isotope-composition-impacts-optical-spectrum-of-2d-bilayer-wse2
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